Journal of Biomolecular NMR, 4 (1994) 491–504 ESCOM

J-Bio NMR 192

¹H and ¹⁵N resonance assignments and secondary structure of the carbon monoxide complex of sperm whale myoglobin

Yves Thériault^{a,*}, Thomas C. Pochapsky ^{a,**}, Claudio Dalvit^{a,***}, Mark L. Chiu^b, Stephen G. Sligar^b and Peter E. Wright^{a,****}

^aDepartment of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, U.S.A. ^bDepartments of Biochemistry and Chemistry, University of Illinois, Urbana, IL 61801, U.S.A.

> Received 16 September 1993 Accepted 28 January 1994

Keywords: Heme protein; Multidimensional NMR; Sequential assignment

SUMMARY

Sequence-specific backbone ¹H and ¹⁵N resonance assignments have been made for 95% of the amino acids in sperm whale myoglobin, complexed with carbon monoxide (MbCO). Many assignments for side-chain resonances have also been obtained. Assignments were made by analysis of an extensive series of homonuclear 2D spectra, measured with unlabeled protein, and both 2D and 3D ¹H-¹⁵N-correlated spectra obtained from uniformly ¹⁵N-labeled myoglobin. Patterns of medium-range NOE connectivities indicate the presence of eight helices in positions that are very similar to those found in the crystal structures of sperm whale myoglobin. The resonance assignments of MbCO form the basis for determination of the solution structure and for hydrogen-exchange measurements to probe the stability and folding pathways of myoglobin. They will also form a basis for assignment of the spectra of single-site mutants with altered ligand-binding properties.

INTRODUCTION

Myoglobin (Mb) is a monomeric heme protein involved in oxygen storage in muscle. It is one of the most extensively studied proteins and is a paradigm for understanding structure-function relationships. Mb has been the subject of many X-ray and neutron diffraction structure determinations, detailed theoretical simulations, and numerous biochemical and spectroscopic investigations. Sperm whale (Springer and Sligar, 1987), human (Varadarajan et al., 1985), porcine (Dodson et al., 1988), and horse heart (Guillemette et al., 1991) myoglobins have been expressed

***Present address: Sandoz Pharma, CH-4002 Basel, Switzerland.

^{*}Present address: Ontogen Corporation, Carlsbad, CA 92009, U.S.A.

^{**}Present address: Department of Chemistry, Brandeis University, Waltham, MA 02254, U.S.A.

^{****}To whom correspondence should be addressed.

in *Escherichia coli* and a large series of mutant proteins has been produced for detailed investigations of structure-function relationships (Braunstein et al., 1988; Lambright et al., 1989; Varadarajan et al., 1989; Carver et al., 1992; Gibson et al., 1992; Balasubramanian et al., 1993; Brantley et al., 1993).

Sperm whale Mb contains a single polypeptide chain of 153 amino acids and an iron protoporphyrin IX (heme) prosthetic group. High-resolution X-ray and neutron structures of sperm whale metMb (Takano, 1977a; Phillips et al., 1990), deoxyMb (Takano, 1977b), and of the oxygen (Phillips, 1980; Phillips and Schoenborn, 1981) and carbon monoxide complexes (Hanson and Schoenborn, 1981; Kuriyan et al., 1986) have been reported. Crystal structures of additional complexes of the sperm whale protein have been determined, together with structures of the human and porcine myoglobins. The dynamic properties of myoglobin have also been the subject of extensive experimental investigations (Frauenfelder et al., 1979; Hartmann et al., 1982; Phillips, 1990) and theoretical simulations (Levy et al., 1985; Elber and Karplus, 1987; Henry, 1993). Ligand binding is thought to be coupled to dynamic fluctuations in the protein structure (Case and Karplus, 1979; Kottalam and Case, 1988), since the X-ray and neutron structures of met- and deoxymyoglobin and its complexes with O_2 and CO reveal no open channels large enough to allow these diatomic ligands to enter or leave the heme pocket.

Understanding of the relationships between structure, dynamics and function of myoglobin would be greatly enhanced by the availability of detailed information on its 3D structure and backbone and side-chain dynamics in solution, both for the wild-type and mutant proteins. As a first step towards these goals, we have undertaken NMR studies of the diamagnetic carbon monoxide complex of sperm whale myoglobin. This paper reports sequence-specific assignments of the backbone resonances and many of the side-chain ¹H resonances of MbCO. Earlier work from this laboratory using 1D and 2D homonuclear NMR experiments, interpreted with the aid of the crystal structures, provided partial ¹H resonance assignments for a small number of protein side chains and for the heme (Mabbutt and Wright, 1985; Dalvit and Wright, 1987). In the present work, the NOE-based sequential assignment procedure (Billeter et al., 1982) was used to obtain assignments independently of prior knowledge of the 3D structure. This was made possible by the ability to express (Springer and Sligar, 1987) uniformly ¹⁵N-labeled sperm whale Mb for 2D and 3D ¹⁵N-dispersed NMR experiments. Unfortunately, the yield of labeled Mb from the minimal medium, containing glycerol as sole carbon source, required for expression was too low to allow economic labeling with ¹³C.

MATERIALS AND METHODS

Sperm whale myoglobin (Sigma type II) was purified using previously described methods (Mabbutt and Wright, 1985). Wild-type myoglobin was also expressed, using the vector pCKR102 containing the *tac* - *lac* double promoter in *E. coli* strain NCM533, and purified as described previously (Springer and Sligar, 1987). Uniformly ¹⁵N-labeled protein was obtained by growing cells on medium containing glycerol (2.0 g/l) and 99% ¹⁵N-ammonium sulfate (2.3 g/l). Recombinant myoglobin differs from the native sperm whale protein in that it retains the initiator methionine at the N-terminus; however, this does not significantly affect the NMR spectrum. The carbon monoxide complex of myoglobin was prepared by reduction of a CO-saturated protein solution with solid sodium dithionite, followed by removal of excess reductant on a Sephadex

G-15 column (Mabbutt and Wright, 1985). Samples for NMR were prepared in potassium phosphate buffer (0.05 M, pH 5.6) in D_2O or in 90% $H_2O/10\%$ D_2O . Freshly prepared samples of recombinant MbCO exhibited splitting of several resonances in the NMR spectra; this splitting was not observed in spectra of native sperm whale MbCO at pH 5.6 (Dalvit and Wright, 1987). After keeping the samples for 1–2 weeks, the extra resonances disappeared and spectra that were very similar to the native sperm whale protein were obtained. These slow, time-dependent spectral changes appear to be associated with reduction of an N-terminal methionine sulfoxide (Chiu, 1992); the spectra of the reduced form of the protein were used for assignment purposes. Except for the recombinant wild-type MbCO, spectra were also recorded for D122N, H64G and H64Y mutants. Only small resonance shifts near the sites of substitution were observed.

NMR spectra were recorded at 35 °C on Bruker AM and AMX spectrometers operating at ¹H frequencies of 500 and 600 MHz. All ¹H chemical shifts were referenced to the Val⁶⁸ C'H₃ resonance at -2.32 ppm relative to water at 4.68 ppm. ¹⁵N chemical shifts were indirectly referenced to liquid NH₃ by using the ¹H frequency of the H₂O resonance (Live et al., 1984; Bax and Subramanian, 1986). NMR data were processed on a CONVEX C-240 supercomputer using a modified version of FTNMR (Hare Research, Inc.). The 3D experiments were processed using FTNMR for the ω_1 and ω_3 planes and a separate routine, written by Dr. Mark Rance, for the ω_2 Fourier transform.

Homonuclear 2D NMR spectra were recorded in the phase-sensitive mode with quadrature detection in the ω_1 dimension, achieved using time-proportional phase incrementation (Drobny et al., 1979; Marion and Wüthrich, 1983). Double-guantum-filtered COSY spectra were recorded using standard pulse sequences and phase cycling (Rance et al., 1983). Relayed COSY spectra (Wagner, 1983) were acquired with various mixing times to optimize relayed coherence transfer for different spin systems. Double-quantum spectra (Braunschweiler et al., 1983; Rance and Wright, 1986) were recorded with multiple-quantum excitation periods of 22.5, 40, 60, 80 and 100 ms. NOESY spectra with mixing times of 60 and 100 ms were acquired using standard pulse sequences (Kumar et al., 1980), followed by a short Hahn-echo period to improve the quality of the baseline (Rance and Byrd, 1983; Davis, 1989). Suppression of the water resonance was accomplished by low-power presaturation. A NOESY spectrum with a mixing time of 200 ms was acquired using a 1,-1 observation pulse. In some cases a low-pass digital filter was applied prior to Fourier transformation to further reduce the residual water signal. Homonuclear 2D spectra were typically recorded with 2048 complex points in t_2 and 400–500 increments in t_1 . Data were zero-filled to $2K \times 4K$ complex points and appropriate window functions were applied before Fourier transformation. Window functions were typically Lorentzian/Gaussian in t₂ and exponential multiplication followed by sine-bell multiplication in t₁. Spectral widths were 8640 Hz or 10 kHz at 500 MHz and 10 or 12.5 kHz at 600 MHz.

Two-dimensional ¹H-¹⁵N-correlated spectra (HSQC, HSQC-NOESY and HSQC-TOCSY) were acquired using pulse sequences described previously (Bax et al., 1990; Norwood et al., 1990). ¹⁵N decoupling was carried out with GARP-1 phase modulation (Shaka et al., 1985), and the DIPSI-2 sequence (Shaka et al., 1988) was used for isotropic mixing ($\tau = 24$ ms) in HSQC-TOCSY experiments. HSQC-NOESY spectra were recorded with a mixing period of 100 ms. Water suppression was accomplished by low-power presaturation. Spectra were acquired with 2K complex points in t₂ and a spectral width of 6250 Hz; 512 t₁ increments were collected with a spectral width of 3048 Hz. A Gaussian window function was applied in t₂ and a cosine-bell

window function followed by a Lorentzian-to-Gaussian transformation was used in t₁.

Heteronuclear 3D TOCSY-HMQC and NOESY-HMQC spectra were acquired with mixing times of 24 and 100 ms, respectively, using similar pulse sequences to those described previously (Marion et al., 1989a,b; Driscoll et al., 1990; Fesik and Zuiderweg, 1990). The DIPSI-2 sequence was used for isotropic mixing and ¹⁵N decoupling was achieved by application of GARP-1. The ¹⁵N-¹H J coupling and refocusing delays were set to 2.3 ms. The water resonance was suppressed by low-power presaturation. The t_1 , t_2 and t_3 dimensions were digitized by 256 × 64 × 1024 data points and had spectral widths of 7126, 3048 and 3112 Hz, respectively. The data were zero-filled to yield $512 \times 64 \times 1$ K real spectra after Fourier transformation. The window functions used were Lorentzian-to-Gaussian (t_2 and t_3), and cosine-bell followed by Lorentzian-to-Gaussian transformation (t_1).

RESULTS AND DISCUSSION

Assignment of the MbCO NMR spectrum is complicated by the high degree of resonance overlap in this 153-amino acid protein and by the inefficiency of coherence transfer from the backbone NH protons to the side chain, due to the small ${}^{3}J_{HN^{\alpha}}$ coupling constants and rapid T_{2} relaxation associated with a helical protein of ~18 kDa molecular weight. Despite these

Fig. 1. Region of a 200-ms NOESY spectrum of MbCO in 90% H₂O/10% D₂O buffer (50 mM potassium phosphate, pH 5.6) at 35 °C, showing amide–amide sequential NOEs. Sequential d_{NN} NOE connectivities for part of the A-helix are indicated.

difficulties, the backbone proton resonances were assigned for all except six of the non-proline residues and extensive side-chain assignments were made using 2D homonuclear spectroscopy and 2D and 3D heteronuclear experiments with uniformly ¹⁵N-labeled myoglobin. Complete and unambiguous identification of all amino acid spin systems was not possible. Our assignment strategy relied upon identification of the relatively simple spin systems in homonuclear COSY, relayed COSY, double-quantum COSY and ¹H-¹⁵N TOCSY spectra (both 2D and 3D) as a starting point for application of standard sequential assignment procedures (Billeter et al., 1982). Most of the sequence-specific backbone assignments are supported by observation of multiple sequential and medium-range NOE connectivities and are thus considered to be highly reliable. In addition, parallel assignment work on the H64G and H64Y mutants (Pochapsky and Wright, unpublished data) helped to confirm the wild-type assignments in some cases by resolving overlaps and ambiguities in the sequential connectivities. During the sequential assignment procedure, NOE and TOCSY connectivities identified between backbone NH resonances and partial side-chain spin systems established on the basis of scalar connectivities were used to complete the spin system assignments wherever possible.

For several amino acid types, the spin systems could be identified completely prior to undertaking sequential assignment. The methods by which this can be achieved, using homonuclear COSY, relayed COSY, TOCSY, and multiple-quantum experiments, have been described in detail elsewhere (Chazin et al., 1988; Rance et al., 1989). Representative spectra, illustrating the excellent quality of the homonuclear 2D spectra of MbCO, have been published in earlier papers (Dalvit et al., 1986; Dalvit and Wright, 1987).

Fig. 2. ¹H-¹⁵N HSQC spectrum of ¹⁵N-labeled MbCO, recorded under the same conditions as the spectrum in Fig. 1. The asterisk indicates a peak arising from a small residual amount of protein containing the N-terminal methionine sulfoxide (see text).

Fig. 3. Strips taken from the amide proton region of different ¹⁵N planes of the 3D NOESY-HMQC spectrum of MbCO, arranged in sequential order. The figure illustrates the assignment of residues in the E-helix. The boxes, horizontal lines and circles indicate intraresidue, sequential and medium-range NOE connectivities, respectively. The dotted horizontal lines indicate $d_{\alpha N}$ NOEs that are observed at lower contour levels.

In the present analysis of the MbCO spectra, 10 of the 11 glycines were readily identified on the basis of the unique ($\omega_{\alpha} + \omega_{\alpha'}$ at ω_{NH}) remote peak in a double-quantum spectrum in H₂O, recorded with excitation period $\tau_m = 22.5$ ms. Complete spin systems were also identified for all 17 alanines, three of the five threonines, and six of the eight valines, on the basis of scalar connectivities observed in double-quantum, relayed COSY, and TOCSY spectra. Double-quantum spectra with long excitation periods (60–100 ms) proved to be particularly valuable for identification of histidine spin systems by correlation of the C⁸H and C^eH resonances through the long-range coupling (Dalvit et al., 1987; Dalvit and Wright, 1987). For four histidines, additional C⁸H-C^βH correlations were observed in double-quantum spectra with long mixing times (Dalvit et al., 1987; Dalvit and Wright, 1987), providing unambiguous connections between the backbone AMX spin system and the imidazole ring. For a further five histidines, NOE connectivities were observed from the C⁸H resonance to the C^βH and either the NH or C^αH resonances of the AMX spin system, leading to complete spin system identification. Assignment of all of the aromatic ring

 \rightarrow

Fig. 4. Summary of the sequential and medium-range NOE connectivities observed for MbCO. The asterisks indicate sequential NOE connectivities where a cross peak is present but is overlapped with another NOE connectivity. No attempt has been made to indicate the relative intensity of the NOE connectivities in this diagram. The location of the helices, based on the observed medium-range NOE connectivities, is shown. The CD loop (residues 44–49) exhibits NOE connectivities characteristic of a 3_{10} -helix and is indicated by a broken 'helix' (see discussion in text). An ambiguous medium-range NOE connectivity between Ala⁹⁴ NH and either Gln⁹¹ C°H or Ala⁹⁰ C°H is indicated by a broken line.

protons has been made previously using multiple-quantum spectroscopy (Dalvit and Wright, 1987). The aromatic spin systems were connected to their backbone protons and $C^{\beta}H$ protons by means of NOEs.

Sequence-specific assignments were established by observation of networks of sequential $d_{\alpha N}, d_{NN}$ and $d_{\beta N}$ and, in the helical regions, medium-range $d_{\alpha N}(i,i+2)$, $d_{\alpha N}(i,i+3)$, $d_{\alpha N}(i,i+4)$, and $d_{NN}(i,i+2)$ NOE connectivities. The backbone and C^βH proton resonances of spin systems that could be completely and unambiguously identified using the methods described above were used as starting points for the sequential assignments. The amide proton region of the homonuclear NOESY spectrum is fairly well resolved (Fig. 1) and considerable progress was made in assigning the helical regions using NOESY spectra acquired at different temperatures and pH values to permit resolution of overlapping cross peaks. However, it did not prove possible to complete the sequential assignments using the homonuclear data alone.

The availability of uniformly ¹⁵N-labeled Mb allowed us to use 2D and 3D ¹H-¹⁵N-correlated experiments to confirm and to extend the sequential assignments. The 2D 1H-15N HSQC spectrum of MbCO is shown in Fig. 2. The spectrum is reasonably well resolved, although some backbone amide cross peaks remain overlapped. Nevertheless, by using 3D NOESY-HMQC and TOCSY-HMQC spectra, in combination with the higher resolution 2D HSQC-NOESY and HSQC-TOCSY experiments, sequential NOE connectivities could be followed for most of the backbone. The 3D spectra proved particularly important for assignments, due to the greatly increased resolution. The TOCSY-HMOC spectrum was used to identify intraresidue connectivities from the amide proton resonance to the $C^{\alpha}H$, $C^{\beta}H$ and sometimes C'H proton resonances. Sequence-specific assignments were then made by identifying networks of sequential $d_{\alpha N}(i,i+1)$, $d_{RN}(i,i+1)$ and $d_{NN}(i,i+1)$ NOE connectivities, supplemented by medium-range NOE connectivities in the helical regions. The sequential assignment of residues 59–78, which form the E-helix, is illustrated in Fig. 3. This figure shows strips taken from the amide proton region of different ¹⁵N planes of the 3D NOESY-HMQC spectrum, arranged in sequential order. The boxes indicate intraresidue NOE connectivities, identified from the 2D or 3D ¹⁵N-edited TOCSY spectra or from homonuclear TOCSY spectra; the horizontal lines show sequential d_{NN} , $d_{\alpha N}$ and $d_{\beta N}$ NOE connectivities, and the circles indicate medium-range NOE connectivities. Multiple NOE connectivities are observed between all residues, giving confidence in the assignments.

A summary of the sequential and medium-range NOE connectivities obtained from the 3D NOESY-HMQC, 2D HSQC-NOESY and homonuclear NOESY spectra is given in Fig. 4 and the sequence-specific assignments made are listed in Table 1. The assignments in Table 1 are mostly supported by multiple sequential and medium-range NOE connectivities. Since ¹³C-labeled protein was not available and since ¹H-¹H TOCSY transfer is inefficient for a helical protein of ~18 kDa, complete side-chain proton assignments could not be made for all residues. Also, backbone ¹H and/or ¹⁵N assignments are either missing or incomplete for eight residues (Pro³⁷, His⁴⁸, Thr⁵¹, Glu⁵², Lys⁸⁷, Glu¹⁰⁵, Pro¹²⁰ and Gly¹²¹). Our inability to assign these backbone resonances at this time probably reflects the overlap that occurs even in the ¹⁵N-edited spectra, problems associated with rapid exchange of amide protons, and difficulties in observing connectivities to C^αH proton resonances under the water resonance. In the absence of ¹³C-labeled Mb, assignments could not be made for most of the proline residues.

The G-helix was the most difficult of the helical regions to assign. This was primarily due to near chemical-shift degeneracy of either the NH, $C^{\alpha}H$ or ¹⁵N resonances of several pairs of

Residue	¹⁵ N	NH	CαH	$C^{\beta}H$	Others
Val ^{1a}			4.31	2.15	С ^ү Н ₃ 0.91, 0.95
Leu ²	126.2	8.35	4.51	0.66	$C^{\gamma}H$ 1.13; $C^{\delta}H_{3}$ -0.37, 0.35
Ser ³	117.7	9.14	4.59		, 5 ,
Glu ⁴	121.4	9.14	4.44	2.06 ^b , 2.23	
Gly ⁵	106.0	8.66	3.87		
Glu ⁶	122.8	7.81	3.90	2.06 ^b . 2.33	
Trp ⁷	119.0	8.56	4.58	3.12 ^b , 3.40 ^b	C ⁸ H 6.97; C ^{ε3} H 7.44; C ^{ζ3} H 7.06; C ⁿ² H 7.28; C ^{ζ2} H 7.16; N ^ε H 9.67; ¹⁵ N ^ε 129.4
Gln ⁸	116.9	8.52	4.11	2.26	, , , , , , , , , , , , , , , , , , ,
Leu ⁹	120.3	7.63	4.26	1.37	C ^Y H 1.87; C ⁸ H ₃ 0.77, 0.84
Val ¹⁰	120.3	8.00	3.70	2.66	C ⁴ H ₂ 0.90, 1.10
Leu ¹¹	118.1	8.81	4.29	1.66 ^b , 1.97	$C^{\gamma}H$ 2.10: $C^{\delta}H_{2}$ 0.85, 0.95
His ¹²	121.2	8,60	4.51	3.48	C ^e H 8.46: C ⁸ H 7.26
Val ¹³	118.5	7.93	3.60	2.44	C ⁷ H, 0.96, 1.19
Trp ¹⁴	122.2	9.04	3.83	3.20, 3.44	$C^{8}H$ 7.03; $C^{\epsilon3}H$ 7.13; $C^{\zeta3}H$ 6.68; $C^{\eta2}H$ 6.92; $C^{\zeta2}H$ 7.51; $N^{\epsilon}H$ 10.27; ${}^{15}N^{\epsilon}$ 128.0
Ala ¹⁵	118.6	7.61	4.14	1.45	, ,
Lys ¹⁶	115.4	7.17	3.84	1.46	
Val ¹⁷	121.2	6.72	1.56	0.87	$C^{\gamma}H_{3} = -0.47, -0.10$
Glu ¹⁸	114.4	7.44	3.49	1.90	
Ala ¹⁹	119.6	6.85	4.22	1.43	
Asp^{20}	115.5	7.55	4.84	2.44, 2.84	
Val ²¹	129.9	8.72	3.49	2.03	С ^ү Н ₃ 0.97, 0.97
Ala ²²	122.2	8.49	3.87	1.20	5
Gly ²³	105.6	8.04	3.75, 3.83		
His ²⁴	116.0	7.56	3.69	2.50, 2.69	C ^ε H 7.91; C ^δ H 6.28
Gly ²⁵	107.8	8.69	3.10, 3.27	,	,
Gln ²⁶	120.3	7.93	3.42	1.90	
Asp ²⁷	117.0	7.47	4.06	2.41, 2.57	
Ile ²⁸	119.8	8.16	3.31	1.52	С ^ү Н ₂ 0.97: С ^ү Н ₂ 0.49: С ⁸ Н ₃ 0.74
Leu ²⁹	118.2	7.20	3.00	0.17, 1.03	C ^Y H 0.86: C ⁸ H ₂ -0.69, -0.29
Ile ³⁰	115.8	7.86	3.31	1.56	$C^{\gamma}H_{2}$ 1.60; $C^{\gamma}H_{3}$ 0.74; $C^{\delta}H_{3}$ 0.49
Arg ³¹	118.0	7.72	3.88		2 / 5 / 5
Leu ³²	122.6	7.92	3.94		C ⁷ H 1.94; C ⁸ H ₃ 0.60, 0.96
Phe ³³	116.4	7.93	4.36	2.89, 2.97	C ⁸ H 7.00; C ^e H 6.46; C ^ζ H 5.21
Lys ³⁴	116.7	8.56	4.03	1.73	
Ser ³⁵	113.0	8.15	4.02	3.41, 3.68	
His ³⁶	117.1	8.05	4.84	2.94	C ^e H 8.15: C ^δ H 7.10
Pro ³⁷					,
Glu ³⁸	121.8	11.03	4.48	2.74 ^b	
Thr ³⁹	113.3	8.73	4.19		С′Н, 1.14 ^b
Leu ⁴⁰	123.4	7.32	3.85	1.02, 1.81	$C'H$ 1.24; $C^{\delta}H_{3}$ -0.08, 0.47
Glu ⁴¹	113.0	7.22	4.04	,	···
Lys ⁴²	113.2	7.69	4.07	2.28 ^b , 2.90	
Phe ⁴³	118.8	8.32	5.01	2.69, 3.29	C ^δ H 7.29; C [€] H 6.07; C ^ζ H 4.73
Asp ⁴⁴	126.4	8.83	4.28	2.74	
Arg ⁴⁵	114.0	8.98	4.12	1.12	

TABLE 1¹⁵N AND ¹H CHEMICAL SHIFTS FOR RECOMBINANT MYOGLOBIN AT 35 °C AND pH 5.6

TABLE 1	(continued)
---------	-------------

Residue	¹⁵ N	NH	С∝Н	СβΗ	Others
Phe ⁴⁶	112.3	7.07	5.11	2.29, 3.27	C ⁸ H 6.76; C ^ε H 6.49; C ^ζ H 6.58
Lys ⁴⁷	116.6	7.59	3.91		
His ⁴⁸			3.91 ^b	3.04, 3.16	C ^e H 8.32; C ⁸ H 7.17
Leu ⁴⁹	123.9	7.54	4.04	1.92, 0.76	C ⁷ H 1.15; C ⁸ H ₃ 0.63, 0.87
Lys ⁵⁰	119.1	8.23	4.28	1.90	-
Thr ⁵¹	107.1	7.58			С ^у Н ₃ 1.18 ^b
Glu ⁵²					-
Ala ⁵³	120.1	8.33	3.94	1.34	
Glu ⁵⁴	117.9	7.66	3.92	1.94	
Met ⁵⁵	118.2	8.04	3.82	2.10 ^b	C ^e H ₃ 1.75
Lys ⁵⁶	118.5	8.49	3.63	1.72	5
Ala ⁵⁷	117.5	7.08	4.23	1.40	
Ser ⁵⁸	110.9	6.81	4.44	3.87, 3.96	
Glu ⁵⁹	134.5	9.13	4.06	2.06, 2.34	
Asp ⁶⁰	119.0	8.35	4.48	2.66	
Leu ⁶¹	123.7	8.08	3.28	0.72, 1.63	$C^{\gamma}H 0.85; C^{\delta}H_{2} = 0.14, 0.47$
Lys ⁶²	119.8	7.12	3.56	1.73 ^b	
Lvs ⁶³	117.6	8.13	3.85	1.94 ^b	
His ⁶⁴	120.1	7.97	4.17	2.41. 2.91	C [€] H 7.13: C ⁸ H 4.92
Glv ⁶⁵	106.1	8.06	2.61. 3.24		
Val ⁶⁶	120.4	7.32	3.38	2.30	С ^ү Н ₂ 0.87, 0.95
Thr ⁶⁷	123.1	7.89	3.84	4.01	C ⁷ H ₂ 1.50
Val ⁶⁸	121.2	7.66	3.26	0.86	$CH_2 = 2.32 = -0.59$
Leu ⁶⁹	116.4	7.91	4.25	1.47	$C'H 1.76: C^{\delta}H_{2} 0.62, 0.76$
Thr ⁷⁰	117.7	8.79	4.18	4.46	C'H ₂ 1.43
Ala ⁷¹	124.8	7.78	4.62	2.40	
Leu ⁷²	118.1	8 68	4.13	1.71 ^b 2.03	C'H 1 15: C ⁸ H, 0 42, 0 90
Glv ⁷³	107.6	9.02	2.64. 4.02		·····, ····, ····, ····
Ala ⁷⁴	121.4	7.56	4.06	1.62	
Ile ⁷⁵	116.4	7.26	3.58	2.12	C'H ₂ 0.82
Leu ⁷⁶	121.9	8.61	4.06	1.03 ^b . 1.96 ^b	$C^{\gamma}H$ 1.45: $C^{\delta}H_{2} = 0.14, 0.79$
Lvs ⁷⁷	113.3	7.86	3.84	1.60 ^b	
Lvs ⁷⁸	114.7	7.30	4.08	1.83. 1.97	
Lys ⁷⁹	120.0	7.96	0.92		
Glv ⁸⁰	106.1	9.31	3.24, 4.11		
His ⁸¹	122.3	7.36	4.84	3.07. 3.35	C ^e H 8.51: C ⁶ H 7.14
His ⁸²	114.2	6.82	5.32	2.78. 3.74	C°H 7.63: C°H 6.69
Glu ⁸³	123.8	8.75	3.97	1.99 ^b	
Ala ⁸⁴	118.2	8 52	4.03	1.38	
Glu ⁸⁵	117.8	8.40	4.06	2.23	
Leu ⁸⁶	124.8	8.18	3.97	2.37 ^b	
Lvs ⁸⁷					
Pro ⁸⁸			4.29°		C ⁸ H ₂ 3.51°
Leu ⁸⁹	119.7	6.34	3.77	1.18, 1.47	$C^{\gamma}H 0.58; C^{\delta}H_{2} 0.29, 0.42$
Ala ⁹⁰	120.8	8.34	3.44	1.19	· · · · · · · · ·
Gln ⁹¹	114.4	7.86	3.56	1.90, 2.13	
Ser ⁹²	115.4	7.96	3.54	,	
His ⁹³	121.5	7.70	2.55	1.77	С ^е Н 1.63; С ⁸ Н 1.11; N ⁸ Н 9.38; ¹⁵ N ⁸ 64.9

TABLE 1 (continued)

Residue	15 N	NH	CαH	$C^{\beta}H$	Others
Ala ⁹⁴	119.3	7.79	3.11	0.30	
Thr ⁹⁵	103.0	6.85	3.85	4.01	C ⁷ H ₃ 0.99
Lvs ⁹⁶	121.3	7.00	4.23	0.99, 1.18	5
His ⁹⁷	114.7	7.14	4.24	1.65 ^b , 2.75 ^b	C [€] H 8.54; C ^δ H 2.34
Lvs ⁹⁸	112.8	6.19	3.27	1.92	· · · · · · · · · · · · · · · · · · ·
Ile ⁹⁹	120.1	7.92	4.40	1.40	
Pro ¹⁰⁰			4.44 ^b		
Ile ¹⁰¹	123.8	9.06	3.56	1.84	С ^у Н ₂ 1.23, 1.30: С ^у Н ₂ 0.77: С ⁸ Н ₂ 0.22
Lvs ¹⁰²	119.6	8.69	3.94	1.43. 1.79	
Tvr^{103}	115.5	7.67	4.52	,	C ⁸ H 7.30: C ⁸ H 7.20
Leu ¹⁰⁴	120.0	8.06	5.03	2.41	$C^{\gamma}H 1.90; C^{\delta}H_{2} 0.73, 1.08$
Glu ¹⁰⁵					
Phe ¹⁰⁶	118.5	7.81	4.81	2.94, 3.52 ^b	C ⁸ H 6.81; C ^ε H 7.44; C ^ζ H 7.44
Ile ¹⁰⁷	119.1	8.74	4.39	2.16	$C^{\gamma}H_{2}$ 1.39, 1.46; $C^{\gamma}H_{2}$ 1.02; $C^{\delta}H_{2}$ 0.31
Ser ¹⁰⁸	120.8	7.89	4.50		-2
Glu ¹⁰⁹	120.8	7.92	4.12	2.40 ^b	
Ala ¹¹⁰	122.2	7.77	4.15	1.60	
Ile ¹¹¹	117.8	8 40	3 48	1.00	
Ile ¹¹²	118.3	7 87	3 72	2.25	Сун. 1 14
His ¹¹³	117.9	8 46	4.27	3 22 3 30	CEH 8 00 COH 6 82
Val ¹¹⁴	120.3	8 43	3.61	2.02	C ⁷ H, 0.98°
1 en ¹¹⁵	120.5	8 39	3.75	1 34	C^{γ} H 1 77: C^{δ} H 0 51 0 69
His ¹¹⁶	115.7	8 13	4 32	3 34	C ⁸ H 7 45: C ⁸ H 8 46
Sor ¹¹⁷	112.6	8.00	3.00	3.74	C II 7.45, C II 8.40
Ara ¹¹⁸	112.0	8.13	3.90	5.74 1.14	COH 2 55, 15NE 06 0, NEH 6 66
нід Ніс ¹¹⁹	117.6	7.40	5.07	3 14 3 74	$C^{\text{EH}} = 8.61 \cdot C^{\delta} \text{H} = 6.02$
Pro^{120}	114.0	7.40	5.25	5.17, 5.27	C II 8.01, C II 0.92
Glv^{121}					
$A \operatorname{sn}^{122}$	1177	7 58d	5 02d	2 40 2 80d	
Dhe ¹²³	117.7	7.50 8 11°	5.02 5.01°	2.40, 2.80	CoH 7 10. CEH 7 22. CLH 7 10
Glv^{124}	123.5	8.00	3.85 4.31	2.71, 5.50	C II 7.10, C II 7.52, C II 7.19
Δ1a ¹²⁵	105.0	8.00	3.77	1 30	
A sp ¹²⁶	117 4	8.60	4 20	1.59	
Ala ¹²⁷	126.5	8 24	3.07	1.52	
Gln ¹²⁸	118 4	8 55	3.11	1.52 1.73b	
G_{1v}^{129}	106.9	8.09	3.41	1.75	
Δ1 ₂ ¹³⁰	124.4	0.00	3.07	1.51	
Met ¹³¹	124.4	1.11 8 51	5.75 1 17	2.36	CEH 2.25
A sn ¹³²	117.5	875		2.30	U 113 2.23 ¹⁵ NE 112 22: NELL 6 02 7 20
4 xou T x/e ¹³³	117.0	7.04	4.4/	2.30, 2.33	IN 112.32, IN F 0.93, 7.39
Lyo Ala ¹³⁴	120.1	7. 74 Q /1	2.00	1.0 4 1.40	
rua Leu ¹³⁵	122.0	0.41 Q 10	3.83 4.20	1.40 1.62 ^b	
Clu ¹³⁶	110.1	0.40 8 47	4.37	1.05-	
Ulu L m ¹³⁷	123.2	0.4/	3.87	1.22	OTI 1 90. ONI 1 10. 1 00
Dha ¹³⁸	122.0	0.3U 7 97	4.08	1.30 2.30, 2.50b	$C^{1}\Pi$ 1.80; $C^{2}\Pi_{3}$ 1.10, 1.23
A ra ¹³⁹	116.0	1.01	4.04	3.29, 3.30° 1.616	CH /.09; CH /.14; CH 6.99
പട	110.9	0.40	3.47 2.00	1.01	
T x/c140	121 4	¥ /v			

Residue	15 N	NH	CαH	$C^{\beta}H$	Others
Ile ¹⁴²	122.7	8.30	3.37	1.27	С'H ₂ 0.56, 0.73; С'H ₃ -0.03; С ⁸ H ₃ -0.13
Ala ¹⁴³	123.2	8.16	3.58	1.39	
Ala ¹⁴⁴	120.6	7.65	4.14	1.55	
Lys ¹⁴⁵	119.0	7.53	4.13	1.96	
Tyr ¹⁴⁶	121.4	9.03	3.87	3.06 ^b , 3.48	C ⁸ H 6.60; C ^e H 6.41
Lys ¹⁴⁷	117.7	7.64	4.06	1.94	
Glu ¹⁴⁸	121.0	7.64	4.01	2.19	
Leu ¹⁴⁹	117.1	7.70	4.18	1.40, 1.74	C'H 1.74; C ⁸ H ₃ 0.53, 0.76
Gly ¹⁵⁰	107.0	7.75	3.69, 4.04		
Tyr ¹⁵¹	121.4	7.96	4.53	2.43	С ⁸ Н 6.47; С ^е Н 6.41
Gln ¹⁵²	124.3	8.19	4.06	1.81, 2.01	C'H ₂ 2.26
Gly ¹⁵³	113.1	6.53	3.43, 3.50		-

TABLE 1 (continued)

^a The recombinant sperm whale myoglobin contains a Met⁰ residue for which no assignment was obtained. The presence of Met⁰ influences the chemical shifts of Val¹, which are at 3.82 ppm for the α - and 2.37 ppm for the β -proton resonances in native sperm whale myoglobin.

^bAssignments based on a combination of intraresidual and sequential NOEs.

° Tentative assignments based on NOEs to the amide proton of Leu⁸⁹.

^d In the Asn¹²² mutant, the chemical-shift values are respectively 7.77, 5.02, 2.94 and 2.40 ppm for the Asn¹²² resonances.

^e The chemical shifts in the Asn¹²² mutant are respectively 8.16, 4.94 and 3.30 ppm.

sequentially adjacent amino acids. The 2D HSQC-NOESY spectrum, with its higher digital resolution, proved to be helpful for resolving the NOE connectivities between these residues. Sequential side chain-backbone or side chain-side chain NOEs were also particularly important for making assignments for the G-helix. The availability of the H64G mutant proved to be useful for confirming the assignments for the G-helix, since the near degeneracy of many of the amide proton resonances was lifted sufficiently to allow unambiguous observation of sequential NOE connectivities.

Not surprisingly, the helical secondary structure, defined in solution by the medium-range NOE connectivities (Fig. 4), is very similar to that found in the crystal structures of Mb (Takano, 1977a,b). The A-helix extends from Glu⁴ to Ala¹⁹, the B-helix from Val²¹ to Ser³⁵, the C-helix from Glu³⁸ to Lys⁴², the E-helix from Ser⁵⁸ to Lys⁷⁸, the G-helix from Ile¹⁰¹ to Arg¹¹⁸, and the H-helix spans residues Ala¹²⁵ to Leu¹⁴⁹. Given the uncertainty in defining the ends of helices from medium-range NOE connectivities, these helices correspond closely to those defined in the X-ray structures. At first glance, the NOE data appear to indicate that the F-helix is longer in solution than in the crystal (Leu⁸⁶–Ala⁹⁴), since medium-range NOE connectivities extend from Leu⁸⁶ to Lys⁹⁸. However, d_{αN}(i,i+3) NOEs to the amide protons of Lys⁹⁶, His⁹⁷ and Lys⁹⁸ are absent; rather, the medium-range NOE connectivities observed to these residues are d_{αN}(i,i+4) and d_{αN}(i,i+5). Thus, the F-helix in solution probably terminates at Ala⁹⁴ or Thr⁹⁵, as in the crystal, and the additional medium-range NOE connectivities extending to Lys⁹⁸ reflect the geometry of the FG loop. Indeed, these NOEs, and the d_{NN}(i,i+2) connectivities observed in this region, are predicted on the basis of the X-ray coordinates. Finally, assignments have not yet been made for

the first two residues, Thr⁵¹ and Glu⁵², that begin the D-helix in the crystal structures; however, residues Ala⁵³ to Ala⁵⁷ exhibit NOE connectivities characteristic of a helix.

A series of medium-range $d_{\alpha N}(i,i+3)$ and $d_{\alpha N}(i,i+2)$ NOE connectivities is observed from Phe⁴³ to Leu⁴⁹, suggesting the presence of a short 3_{10} -helix. This region is termed the CD loop and is not normally considered as one of the eight helices that constitute the myoglobin fold. However, examination of the hydrogen-bonding pattern in the neutron structure of MbCO (Schoenborn, 1971; Hanson and Schoenborn, 1981) reveals 3_{10} -helical hydrogen bonds between Leu⁴⁰-Phe⁴³, Phe⁴³-Phe⁴⁶ and Asp⁴⁴-Lys⁴⁷. Given the occurrence of this irregular 3_{10} -helix-like structure in the solid state, it is not surprising that $d_{\alpha N}(i,i+3)$ and $d_{\alpha N}(i,i+2)$ NOE connectivities are observed in solution.

CONCLUSIONS

Using only homonuclear 2D spectra and 2D and 3D ¹⁵N-dispersed TOCSY and NOESY experiments, we have successfully assigned 95% of the backbone resonances and many of the side-chain resonances of MbCO. The observed sequential and medium-range NOE connectivities confirm that the helical secondary structure of myoglobin in solution is very similar to that observed in the crystal structures. The assignments reported in this paper have been used to obtain constraints for calculation of 3D solution structures of MbCO using distance geometry and restrained molecular dynamics, including application of a novel chemical-shift refinement procedure (Ösapay, Thériault, Wright and Case, manuscript in preparation). The resulting NMR structures are very similar to the X-ray and neutron structures of MbCO. In addition, the backbone assignments form the basis for detailed measurements of amide proton-exchange rates and for hydrogen-exchange pulse labeling studies of myoglobin folding pathways (Jennings and Wright, 1993). Future measurements of backbone dynamics and hydration are planned.

ACKNOWLEDGEMENTS

We thank Linda Tennant for technical assistance, Jane Dyson and Pat Jennings for valuable assistance and discussions, and David Case, Klara Ösapay, Mark Rance and John Cavanagh for helpful discussions. This work was supported by grants DK34909 (to P.E.W.) and GM31756 (to S.G.S.) from the National Institutes of Health.

REFERENCES

Balasubramanian, S., Lambright, D.G., Marden, M.C. and Boxer, S.G. (1993) Biochemistry, 32, 2202-2212.

- Bax, A. and Subramanian, S. (1986) J. Magn. Reson., 67, 565-569.
- Bax, A., Ikura, M., Kay, L.E., Torchia, D.A. and Tschudin, R. (1990) J. Magn. Reson., 86, 304-318.
- Billeter, M., Braun, W. and Wüthrich, K. (1982) J. Mol. Biol., 155, 321-346.
- Brantley Jr., R.E., Smerdon, S.J., Wilkinson, A.J., Singleton, E.W. and Olson, J.S. (1993) J. Biol. Chem., 268, 6995-7010. Braunschweiler, L., Bodenhausen, G. and Ernst, R.R. (1983) Mol. Phys., 48, 535-560.
- Braunstein, D., Ansari, A., Berendzen, J., Cowen, B.R., Egeberg, K.D., Frauenfelder, H., Hong, M.K., Ormos, P., Sauke, T.B., Scholl, R., Schulte, A., Sligar, S.G., Springer, B.A., Steinbach, P.J. and Young, R.D. (1988) Proc. Natl. Acad. Sci. USA, 85, 8497–8501.
- Carver, T.E., Brantley Jr., R.E., Singleton, E.W., Arduini, R.M., Quillin, M.L., Phillips Jr., G.N. and Olson, J.S. (1992) J. Biol. Chem., 267, 14443-14450.

- Case, D.A. and Karplus, M. (1979) J. Mol. Biol., 132, 343-368.
- Chazin, W.J., Rance, M. and Wright, P.E. (1988) J. Mol. Biol., 202, 603-622.
- Chiu, M.L. (1992) Ph.D. Thesis, University of Illinois, Urbana-Champaign, IL.
- Dalvit, C., Rance, M. and Wright, P.E. (1986) J. Magn. Reson., 69, 356-361.
- Dalvit, C. and Wright, P.E. (1987) J. Mol. Biol., 194, 313-327.
- Dalvit, C., Wright, P.E. and Rance, M. (1987) J. Magn. Reson., 71, 539-543.
- Davis, D.G. (1989) J. Magn. Reson., 81, 603-607.
- Dodson, G., Hubbard, R.E., Oldfield, T.J., Smerdon, S.J. and Wilkinson, A.J. (1988) Protein Eng., 2, 233-237.
- Driscoll, P.C., Clore, G.M., Marion, D., Wingfield, P.T. and Gronenborn, A.M. (1990) Biochemistry, 29, 3542-3556.
- Drobny, G., Pines, A., Sinton, S., Weitekamp, D. and Wemmer, D. (1979) Symp. Faraday Soc., 13, 49-55.
- Elber, R. and Karplus, M. (1987) Science, 235, 318-321.
- Fesik, S.W. and Zuiderweg, E.R.P. (1990) Q. Rev. Biophys., 23, 97-131.
- Frauenfelder, H., Petsko, G.A. and Tsernoglou, D. (1979) Nature, 280, 558-563.
- Gibson, Q.H., Regan, R., Elber, R., Olson, J.S. and Carver, T.E. (1992) J. Biol. Chem., 267, 22022-22034.
- Guillemette, J.G., Matsushima-Hibiya, Y., Atkinson, T. and Smith, M. (1991) Protein Eng., 4, 585-592.
- Hanson, J.C. and Schoenborn, B.P. (1981) J. Mol. Biol., 153, 117-146.
- Hartmann, H., Parak, F., Steigemann, W., Petsko, G.A., Ponzi, D.R. and Frauenfelder, H. (1982) Proc. Natl. Acad. Sci. USA, 79, 4967–4971.
- Henry, E.R. (1993) Biophys. J., 64, 869-885.
- Jennings, P.A. and Wright, P.E. (1993) Science, 262, 892-896.
- Kottalam, J. and Case, D.A. (1988) J. Am. Chem. Soc., 110, 7690-7697.
- Kumar, A., Ernst, R.R. and Wüthrich, K. (1980) Biochem. Biophys. Res. Commun., 95, 1-6.
- Kuriyan, J., Wilz, S., Karplus, M. and Petsko, G.A. (1986) J. Mol. Biol., 192, 133-154.
- Lambright, D.G., Balasubramanian, S. and Boxer, S.G. (1989) J. Mol. Biol., 207, 289-299.
- Levy, R.M., Sheridan, R.P., Keepers, J.W., Dubey, G.S., Swaminathan, S. and Karplus, M. (1985) *Biophys. J.*, 48, 509-518.
- Live, D.H., Davis, D.G., Agosta, W.C. and Cowburn, D. (1984) J. Am. Chem. Soc., 106, 1939-1941.
- Mabbutt, B.C. and Wright, P.E. (1985) Biochim. Biophys. Acta, 832, 175-185.
- Marion, D. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 113, 967-974.
- Marion, D., Driscoll, P.C., Kay, L.E., Wingfield, P.T., Bax, A., Gronenborn, A.M. and Clore, G.M. (1989a) Biochemistry, 28, 6150-6156.
- Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. and Bax, A. (1989b) J. Am. Chem. Soc., 111, 1515-1517.
- Norwood, T.J., Boyd, J., Heritage, J.E., Soffe, N. and Campbell, I.D. (1990) J. Magn. Reson., 87, 488-501.
- Phillips Jr., G.N. (1990) Biophys. J., 57, 381-383.
- Phillips Jr., G.N., Arduini, R.M., Springer, B.A. and Sligar, S.G. (1990) Proteins, 7, 358-365.
- Phillips, S.E.V. (1980) J. Mol. Biol., 142, 531-554.
- Phillips, S.E.V. and Schoenborn, B.P. (1981) Nature, 292, 81-82.
- Rance, M. and Byrd, R.A. (1983) J. Magn. Reson., 52, 221-240.
- Rance, M., Sørensen, O.W., Bodenhausen, G., Wagner, G., Ernst, R.R. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 117, 479-485.
- Rance, M. and Wright, P.E. (1986) J. Magn. Reson., 66, 372-378.
- Rance, M., Chazin, W.J., Dalvit, C. and Wright, P.E. (1989) Methods Enzymol., 176, 114-133.
- Schoenborn, B.P. (1971) Cold Spring Harbor Symp. Quant. Biol., 36, 569-575.
- Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson., 64, 547-552.
- Shaka, A.J., Lee, C.J. and Pines, A. (1988) J. Magn. Reson., 77, 274-293.
- Springer, B.A. and Sligar, S.G. (1987) Proc. Natl. Acad. Sci. USA, 84, 8961-8965.
- Takano, T. (1977a) J. Mol. Biol., 110, 537-568.
- Takano, T. (1977b) J. Mol. Biol., 110, 569-584.
- Varadarajan, R., Szabo, A. and Boxer, S.G. (1985) Proc. Natl. Acad. Sci. USA, 82, 5681-5684.
- Varadarajan, R., Lambright, D.G. and Boxer, S.G. (1989) Biochemistry, 28, 3771-3781.
- Wagner, G. (1983) J. Magn. Reson., 55, 151-156.